Showing 121–132 of 674 results
-

- High Magnetic Properties: Cobalt is known for its strong magnetic characteristics, making it suitable for magnetic thin films and data storage applications.
- Corrosion Resistance: Cobalt provides excellent resistance to oxidation and corrosion, particularly in harsh chemical or environmental conditions.
- High Melting Point: With a melting point of 1,495°C, cobalt is suitable for high-temperature applications, including aerospace and automotive industries.
- Wear Resistance: Cobalt thin films are highly resistant to wear and tear, making them ideal for protective coatings in demanding environments.
- Electrical Conductivity: Cobalt has good electrical conductivity, making it useful in microelectronics as a contact material or diffusion barrier.
-

- High Purity: Ensures optimal performance in advanced applications.
- Magnetic Properties: Excellent ferromagnetic behavior for magnet manufacturing.
- Corrosion Resistance: Superior resistance to oxidation and harsh environments.
- Thermal Stability: Reliable performance at elevated temperatures.
- Customizable Particle Sizes: Nano to micrometer options for diverse applications.
- Versatile Applications: Suitable for batteries, alloys, magnets, and catalysis.
-


- Purity: Cobalt sputtering targets are typically available in high purity levels, such as 99.95% (3N5) or higher, ensuring the deposition of high-quality, consistent films.
- Shapes and Sizes: These targets are available in various forms, including discs, plates, and custom shapes, to suit different sputtering systems and specific application requirements.
-

- Magnetic Excellence: Superior magnetic saturation and coercivity make cobalt wire ideal for permanent magnets and magnetic sensors.
- High Temperature Performance: Retains mechanical and magnetic properties at elevated temperatures, suitable for high-heat applications.
- Long Service Life: Outstanding wear resistance and corrosion protection ensure durability and longevity.
- Versatility: Available in various diameters, purities, and forms to suit diverse industrial and scientific needs.
- Customizability: Can be tailored for specific applications, including custom lengths, coatings, and alloys.
- Environmentally Stable: Resists degradation in extreme environments, such as marine or chemically aggressive settings.
-

- High Catalytic Activity: Co₂O₃ is well known for its excellent catalytic properties, making it suitable for applications requiring enhanced oxidation reactions.
- Magnetic Properties: With significant magnetic behavior, Co₂O₃ is valuable in magnetic and spintronic devices.
- Electrical Conductivity: Co₂O₃ has good electrical conductivity, making it useful for battery and electronic applications.
- Environmental Stability: Co₂O₃ exhibits stability under various environmental conditions, ensuring the longevity of the thin films produced.
-

- High Purity: Available with purity levels of ≥99.5%.
- Thermal Stability: Stable under high-temperature conditions.
- Catalytic Efficiency: Effective for a variety of chemical reactions.
- Electronic Properties: Suitable for semiconductors and electronic components.
- Customizable Particle Sizes: Nano (<100 nm) and micro (1–50 µm) grades available or customized.
-

- High Purity: Available with purity levels of ≥99.5%.
- Thermal Stability: Performs effectively in high-temperature environments.
- Magnetic Properties: Exhibits unique magnetic behavior suitable for electronic applications.
- Catalytic Activity: Effective in promoting chemical reactions.
- Customizable Particle Sizes: Nano (<100 nm) and micro (1–50 µm) grades available or customized.
-

- High Conductivity: Co3O4 thin films exhibit good electrical conductivity, which can be tailored for use in supercapacitors and battery electrodes.
- Catalytic Activity: Cobalt oxide is a highly efficient catalyst, especially in electrochemical applications, due to its ability to facilitate oxidation-reduction reactions.
- Good Thermal Stability: Co3O4 is thermally stable, making it suitable for high-temperature applications such as catalysis and energy storage.
- Magnetic Properties: Co3O4 films possess useful magnetic properties, which are exploited in various magnetic and electronic devices.
-


- Exceptional Corrosion Resistance: The addition of chromium significantly enhances the corrosion resistance of CoCr thin films, making them suitable for harsh environments, including medical and aerospace applications.
- High Wear Resistance: CoCr alloys are known for their wear resistance, making them ideal for applications requiring durable coatings, such as in industrial machinery and tools.
- Thermal Stability: Cobalt’s high melting point, combined with chromium’s ability to withstand oxidation, allows CoCr thin films to maintain their properties in high-temperature environments.
- Biocompatibility: The CoCr alloy is biocompatible, making it the material of choice for medical implants and devices, where resistance to body fluids and mechanical durability are essential.
- Good Mechanical Strength: CoCr sputtering targets produce films with excellent mechanical properties, ensuring strength and toughness for components exposed to stress and abrasion.
-

- High Strength: Provides excellent mechanical strength and stability at elevated temperatures.
- Corrosion Resistance: Resists oxidation and corrosion, enhancing the longevity of components.
- Wear Resistance: Ideal for applications requiring materials that can withstand high levels of wear and tear.
-

- Biocompatibility: CoCrMo alloys are highly biocompatible, making them ideal for medical implants and devices that come in contact with human tissue and bone.
- Wear Resistance: The addition of molybdenum enhances the alloy’s resistance to wear and fatigue, making CoCrMo thin films durable under mechanical stress and long-term use.
- Corrosion Resistance: Cobalt and chromium provide excellent corrosion resistance, protecting components from damage in harsh environments, including body fluids, chemicals, and marine conditions.
- Mechanical Strength: CoCrMo alloy sputtering targets produce thin films with exceptional mechanical strength, allowing coated components to withstand high loads and stresses.
- High-Temperature Stability: CoCrMo alloys retain their properties at elevated temperatures, making them suitable for applications in aerospace and industrial settings where heat resistance is critical.
-


- Excellent Corrosion Resistance: Chromium and nickel provide outstanding corrosion resistance, making CoCrNi thin films suitable for harsh environments, including those found in aerospace, medical, and industrial applications.
- High Mechanical Strength: Cobalt contributes to the alloy’s superior mechanical properties, providing excellent wear resistance and toughness, which are essential for industrial and aerospace components.
- Thermal Stability: The combination of cobalt, chromium, and nickel allows CoCrNi thin films to retain their properties at elevated temperatures, making them ideal for high-temperature environments, such as in aerospace and energy applications.
- Biocompatibility: CoCrNi alloys are biocompatible, making them suitable for use in medical implants and devices, where both mechanical strength and resistance to bodily fluids are required.
- Good Electrical Properties: The electrical conductivity of the alloy makes it suitable for electronic applications, including connectors and semiconductor components.