Showing 421–432 of 677 results
-


- Hardness and Durability: NiW alloys offer exceptional hardness and durability, making them ideal for wear-resistant coatings that protect mechanical parts and tools from wear and abrasion.
- Corrosion Resistance: NiW thin films provide strong resistance to corrosion, particularly in harsh environments exposed to moisture, chemicals, or high salinity, extending the service life of components.
- Thermal Stability: The alloy maintains its mechanical and chemical properties at elevated temperatures, making NiW thin films suitable for high-temperature applications in various industries.
- Magnetic Properties: The nickel content in NiW alloys provides magnetic characteristics that are useful in certain electronic and magnetic storage applications.
- Customizable Composition: The ratio of nickel to tungsten can be customized to fine-tune the properties of the thin film for specific applications, such as increasing hardness, wear resistance, or corrosion protection.
-

- High Density: Exceptional density provides effective radiation shielding.
- Malleability: Easily shaped and manipulated to fit intricate forms and surfaces.
- Corrosion Resistance: Naturally resistant to most environmental and chemical effects.
- Thermal and Acoustic Insulation: Excellent properties for heat and sound dampening.
- Durability: Withstands wear and tear in harsh environments.
- Impermeability: Blocks light, moisture, and gases, making it suitable for sensitive sealing applications.
-


- High Purity: Typically ≥ 99.9% pure, ensuring high-quality films and minimizing impurities.
- Consistent Quality: Manufactured under controlled conditions to ensure uniformity in size and composition.
- Excellent Thermal Conductivity: Provides efficient heat transfer during the evaporation process.
- Customizable Sizes: Available in various pellet sizes to meet specific evaporation requirements.
-

- High Density: Provides superior radiation shielding and soundproofing capabilities.
- Corrosion Resistance: Stable under various environmental conditions.
- Excellent Malleability: Easily shaped for diverse industrial uses.
- Thermal and Electrical Conductivity: Suitable for conductive applications.
- Versatile Applications: Applicable in alloys, batteries, and protective coatings.
-


- Thickness: The thickness of the lead coating can be precisely controlled during the sputtering process, allowing for tailored solutions to meet specific application needs.
- Alloys: Lead sputtering targets can be produced as pure lead or in alloyed forms, such as lead-tin (Pb-Sn) or lead-silver (Pb-Ag), depending on the desired properties of the thin film.
- Backing Plates: Lead targets can be bonded to backing plates made from materials like copper or aluminum to improve thermal conductivity and mechanical stability during the sputtering process.
-

- Narrow Bandgap: PbS has a small bandgap (~0.37 eV), allowing it to detect and respond to IR radiation, making it ideal for infrared applications.
- High Infrared Sensitivity: PbS thin films exhibit excellent sensitivity to infrared light, especially in the mid-IR range, enhancing performance in IR detectors and sensors.
- Efficient Light Absorption: PbS absorbs light efficiently, making it a great material for photovoltaic devices and optoelectronic components.
- Good Thermal Stability: PbS films maintain their properties under moderate temperature conditions, suitable for use in thermal and IR-sensitive devices.
- Adaptability to Thin Films: PbS can be easily deposited as a thin film via evaporation, making it suitable for creating highly sensitive IR detectors and optical coatings.
-


- Narrow Bandgap Semiconductor: PbTe has a bandgap of approximately 0.32 eV, which enables high sensitivity to infrared radiation in the 3-5 µm range.
- High Thermoelectric Efficiency: PbTe has excellent thermoelectric properties, making it suitable for energy conversion in both power generation and refrigeration applications.
- Good Thermal and Electrical Conductivity: PbTe exhibits strong thermal and electrical conductivity, essential for efficient thermoelectric devices and IR detection systems.
- Infrared Absorption: PbTe is highly effective at absorbing infrared light, particularly in the mid-IR region, making it ideal for infrared detectors and optoelectronic devices.
- Thin Film Deposition: PbTe can be deposited as a uniform thin film through evaporation techniques, ensuring high performance in electronic and optoelectronic applications.
-

- Thermoelectric Efficiency: Exceptional thermoelectric properties for energy conversion and cooling applications.
- High Purity: ≥99.9% purity available, ensuring minimal impurities and high-quality performance.
- High Stability: Stable under both high and low temperatures, making it ideal for use in diverse temperature environments.
- Customizable Particle Size: Available in a range of particle sizes from nano to micro, suitable for various processing needs.
- Environmentally Friendly: PbTe is non-toxic and can be utilized in energy harvesting solutions, promoting sustainability.
- Versatile Application: Can be used in thermoelectric generators (TEGs) and thermoelectric coolers (TECs).
-


- High Purity: Up to 99.99% for superior film quality.
- Customizable Dimensions: Available in various sizes and shapes to fit specific equipment.
- Excellent Performance: Delivers consistent and uniform thin films.
- Thermoelectric and IR Applications: Suitable for deposition in advanced electronics and sensor systems.
-

- High Purity: Palladium pellets are available with purity levels of 99.95% (3N5) or higher, ensuring high-quality thin films with minimal impurities.
- Catalytic Properties: Palladium is highly valued for its catalytic activity, particularly in chemical reactions involving hydrogen.
- Corrosion Resistance: Palladium thin films offer excellent resistance to corrosion, making them suitable for applications in harsh environments.
- Electrical Conductivity: Palladium’s superior conductivity makes it ideal for use in electronic and semiconductor applications.
- Durability: Palladium coatings are long-lasting and resistant to wear, providing reliable performance in demanding applications.
-

- Outstanding Catalytic Properties: Palladium is an efficient catalyst in various industrial processes, especially in automotive emissions control and chemical production.
- High Electrical Conductivity: Suitable for electronic components that require stable and reliable performance.
- Corrosion Resistance: Palladium resists oxidation and corrosion, even at high temperatures.
- Hydrogen Absorption: Unique ability to absorb hydrogen, utilized in hydrogen storage and purification systems.
-


Palladium (Pd) sputtering targets are widely used in physical vapor deposition (PVD) processes to create thin films and coatings for various high-tech applications. Palladium, a precious metal in the platinum group, is known for its excellent catalytic properties, high conductivity, and strong resistance to corrosion and oxidation.