Showing 301–312 of 668 results
-


- Excellent Crystal Quality: Low dislocation density, high structural perfection.
- Ideal Lattice Match: Close lattice parameters with materials like YBCO, LSMO, PZT, and other perovskite oxides.
- High Thermal Stability: Suitable for high-temperature thin film deposition processes.
- High Dielectric Constant: Beneficial for microwave devices and tunable capacitors.
- Low Dielectric Loss: Ensures superior performance at high frequencies.
- Chemical Stability: Strong resistance to acids and bases.
- Atomically Smooth Surface: Achieved through advanced polishing and chemical etching processes.
-

- Exceptional Ionic Conductivity: Enhances energy transfer in battery technologies.
- Stable and Durable: Chemically stable under a wide range of operating conditions.
- High Dielectric Constant: Ideal for electronic and capacitor applications.
- Customizable: Available in multiple sizes, shapes, and purity levels to meet specific application needs.
- Compatible: Works efficiently with various sputtering deposition systems.
-


- Excellent Lattice Matching: Ideal match for many perovskite oxides such as YBCO, BST, and PZT
- High Thermal Stability: Maintains structural integrity under high temperatures
- Low Dielectric Loss: Suitable for microwave and dielectric applications
- High Crystallinity: Enables defect-free epitaxial film growth
- Good Mechanical Strength: Durable for various thin-film deposition processes
- Smooth Surface Finish: Atomic-level flatness for epitaxial growth
- High Chemical Stability: Resists degradation during processing
- Wide Application Range: Compatible with superconducting, ferroelectric, and oxide-based systems
-

- Mott Insulator Properties: LaTiO₃ exhibits insulating behavior despite having partially filled electronic bands, which makes it valuable in the study of Mott insulators and potential applications in quantum electronics.
- Perovskite Structure: Its perovskite crystal structure enables integration into other perovskite materials and systems, providing flexibility in multilayered thin-film devices.
- Electrical and Magnetic Properties: LaTiO₃ exhibits a combination of electrical and magnetic properties that are useful in advanced electronic devices.
- Optical Transparency: The material is transparent in certain spectral regions, making it suitable for use in optoelectronic devices.
-

- High Purity: ≥99.9% purity, ensuring optimal performance in sensitive applications.
- Fine Powder: Available in micro and nano particle sizes, providing enhanced reactivity and consistency.
- Versatile Applications: Ideal for use in lithium-ion batteries, ceramics, glass production, and pharmaceutical formulations.
- Environmental Compatibility: Non-toxic and suitable for eco-friendly applications in energy storage systems.
- Stable and Safe: Chemically stable under normal conditions and relatively safe for handling in industrial processes.
-

- High Purity: Guarantees low contamination for critical applications.
- Chemical Stability: Resistant to degradation, ensuring durable coatings.
- Superior Ionic Conductivity: Optimal for battery and energy storage films.
- Consistent Deposition: Ensures uniform and reliable thin-film performance.
- Customizable Dimensions: Adaptable to different sputtering systems and requirements.
-


- High Stability: Li₄Ti₅O₁₂ has excellent chemical and structural stability, making it an ideal material for long-lasting energy storage devices.
- Low Volume Expansion: This material shows minimal expansion and contraction during charge/discharge cycles, improving battery longevity.
- Thermal Safety: Li₄Ti₅O₁₂ has a high thermal stability, reducing the risk of overheating in energy storage devices.
- Fast Charging Capability: The material is recognized for its fast charge/discharge properties, making it suitable for high-performance batteries.
-


- High Thermal Stability: Excellent performance under high temperatures up to 1500°C.
- Wide Bandgap: Enables use in deep UV and high-power electronic applications.
- Superior Mechanical Strength: Resists thermal shock and mechanical stress.
- Excellent Lattice Match: Ideal substrate for GaN, AlN, ZnO, and other oxide semiconductor epitaxial growth.
- Low Dielectric Loss: Beneficial for microwave and RF device applications.
- Chemical Inertness: High resistance to acids, alkalis, and environmental degradation.
- Smooth, Defect-Free Surface: Essential for high-yield epitaxial growth and thin-film deposition.
-


- High Energy Density: LiCoO₂ has a high theoretical energy density, making it an ideal material for battery cathodes, especially in high-performance applications like electric vehicles and portable electronics.
- Stable Structure: The layered crystal structure of LiCoO₂ contributes to its stable electrochemical performance, which is crucial for the long-term operation of lithium-ion batteries.
- Excellent Cycling Performance: LiCoO₂ can undergo many charge and discharge cycles without significant degradation, ensuring reliable performance in rechargeable battery systems.
- Thin Film Deposition: LiCoO₂ sputtering targets allow for the precise deposition of thin films in applications requiring uniform coatings, such as in thin-film batteries and microelectronics.
-

- High Optical Transparency: LiF has high optical transparency in the UV, visible, and infrared regions, making it an excellent material for optical coatings and components.
- Wide Bandgap: LiF has a wide bandgap (~13.6 eV), which makes it an excellent insulating material in electronic and optoelectronic applications.
- Low Absorption: LiF thin films exhibit low absorption across a broad spectral range, making them ideal for applications where minimal light loss is required.
- Chemical Stability: LiF is chemically stable and resistant to moisture, which contributes to its durability in harsh environments and long-lasting performance in thin-film coatings.
- Insulating Properties: LiF has excellent insulating properties, which are beneficial for electronic and optoelectronic devices where electrical isolation is needed.
-


- High Purity: Ensures minimal impurities, delivering superior film quality.
- Thermal Stability: Provides consistent performance under varying conditions.
- Safety Profile: Stable chemistry reduces risks of thermal runaway.
- Customizable Dimensions: Tailored to fit a range of sputtering systems.
- Reliable Deposition: Delivers uniform and high-quality thin films.
-


- High Electro-optic Coefficient: LiNbO₃ has a high electro-optic coefficient, enabling efficient modulation of light in waveguides, modulators, and telecommunications devices.
- Excellent Piezoelectric Properties: LiNbO₃’s strong piezoelectric response makes it ideal for use in SAW devices, sensors, and actuators, providing high sensitivity and control.
- Nonlinear Optical Capabilities: LiNbO₃ is widely used for frequency conversion and other nonlinear optical applications due to its strong nonlinear optical response.
- Ferroelectric Behavior: LiNbO₃’s ferroelectric properties are valuable in memory devices and data storage, enabling the development of non-volatile memory technologies.
- Stable and Durable Thin Films: LiNbO₃ thin films exhibit high thermal and chemical stability, making them suitable for use in demanding environments and high-performance applications.