Showing 469–480 of 674 results
-

- High Purity: Ensures superior performance in sensitive applications.
- Thermal Stability: Maintains stability at high temperatures.
- Exceptional Optical Properties: High transparency in the UV and IR spectra.
- Low Thermal Expansion: Ideal for use in advanced ceramics.
- Customizable Particle Sizes: Nano and micrometer scales available.
- Excellent Chemical Resistance: Resists degradation in harsh environments.
-


- High Dielectric Constant: Sc₂O₃ is known for its high dielectric constant, making it useful in capacitors and semiconductor devices.
- Thermal Stability: Sc₂O₃ maintains its properties even at elevated temperatures, making it suitable for harsh environments.
- Optical Transparency: Sc₂O₃ is transparent across a wide range of wavelengths, from UV to IR, which is beneficial in optical coatings and devices.
- Corrosion Resistance: Sc₂O₃ thin films are highly resistant to chemical corrosion, enhancing the longevity of coated surfaces.
-

- Ultra-high purity (≥99.9%).
- Superior thermal and chemical stability.
- Precise dimensions for uniform deposition.
- Customizable sizes and shapes available.
- Wide application in advanced technology industries.
-


- Photoconductive Properties: Selenium changes its electrical conductivity when exposed to light, making it essential for optoelectronic devices such as photodetectors and xerography.
- Semiconductor Capabilities: Selenium is a key element in semiconductor applications, offering high photoelectric sensitivity and versatility in electronic components.
- High Purity: Selenium evaporation materials are typically offered in high-purity levels (≥ 99.9%) for optimal thin-film deposition and consistent results.
- Compatibility with PVD Techniques: Selenium pellets can be easily evaporated using thermal or electron-beam evaporation, providing stable and uniform thin films.
- Infrared Optics: Selenium-based compounds, like cadmium selenide (CdSe), are used in infrared detectors and imaging technologies due to their IR transparency.
-


- Purity: High-purity selenium (typically 99.9% or higher) ensures the quality of the deposited films and consistent performance.
- Photoconductivity: Selenium is highly photoconductive, making it ideal for optoelectronic and photovoltaic applications.
- Customizable Size and Shape: Selenium sputtering targets are available in different forms, including discs, plates, and custom shapes, to fit a variety of PVD systems.
- Thermal and Electrical Properties: Selenium films offer excellent thermal and electrical properties, crucial for semiconductor and photovoltaic devices.
-


$10.00 – $335.00
- High Purity: Silicon pellets typically have a purity of ≥ 99.9%, ensuring high-quality thin-film deposition with minimal contamination.
- Semiconductor Properties: Silicon’s intrinsic semiconducting properties make it crucial for electronic and optoelectronic applications.
- Thermal Stability: Silicon can withstand high temperatures during deposition, providing stable and uniform films.
- Infrared Transparency: Silicon exhibits excellent transparency in the infrared (IR) range, making it suitable for IR optics and coatings.
- Easy Evaporation: Silicon pellets are easily evaporated using thermal or electron-beam evaporation techniques, allowing for precise control in thin-film deposition.
-


- Purity: Silicon sputtering targets are typically available in high purity (99.999% or higher) to ensure high-performance film deposition, particularly in sensitive semiconductor applications.
- Electrical Properties: Silicon is an intrinsic semiconductor, and thin films made from silicon offer excellent electrical characteristics for electronic and optoelectronic devices.
- Thermal Conductivity: Silicon’s thermal properties make it ideal for applications where heat dissipation is important, such as in power electronics and solar cells.
- Customizable Size and Shape: Silicon sputtering targets come in various forms, including discs, plates, and custom shapes to fit different deposition systems.
-

- High Purity: Ensures minimal contamination and consistent deposition performance.
- Optimal Stoichiometry: Precisely controlled Si and Te ratio for superior material properties.
- Wide Compatibility: Suitable for various deposition techniques, including PVD and sputtering.
- Excellent Film Properties: Supports the production of uniform, high-quality thin films.
- Customizable Options: Flexible sizes and shapes to fit diverse sputtering systems.
-


- High purity (≥99.9%).
- Outstanding thermal and mechanical stability.
- Uniform pellet size for precise deposition.
- Customizable sizes and specifications.
- Superior resistance to oxidation, corrosion, and wear.
-

- High Purity: Purity levels up to 99.999% for critical applications.
- Superior Mechanical Strength: Exceptional hardness and fracture toughness.
- Thermal Stability: Outstanding resistance to thermal shock and high-temperature environments.
- Chemical Resistance: Resistant to oxidation, corrosion, and chemical reactions.
- Low Thermal Expansion: Ideal for applications requiring dimensional stability.
- Customizable Particle Sizes: Nano and micron sizes to fit diverse applications.
-


- High Hardness: Si₃N₄ thin films are extremely hard and wear-resistant, making them ideal for applications in harsh mechanical environments.
- Excellent Thermal Stability: Si₃N₄ offers high thermal stability, ensuring reliability and performance in high-temperature applications, such as semiconductors and aerospace components.
- Low Thermal Expansion: Silicon Nitride exhibits low thermal expansion, contributing to its stability and performance under thermal stress.
- Chemical Resistance: Si₃N₄ is chemically inert and resists corrosion from most acids, bases, and chemical agents, which makes it suitable for protective coatings in chemically aggressive environments.
- Insulating Properties: Si₃N₄ films are used as dielectric materials due to their excellent electrical insulating properties, ensuring their use in semiconductor and electronic applications.
-

- High Hardness: SiC is one of the hardest materials available, making it ideal for protective coatings and abrasive applications.
- High Thermal Conductivity: SiC efficiently dissipates heat, making it suitable for high-temperature coatings in optical and electronic devices.
- Chemical Stability: SiC is highly resistant to corrosion and oxidation, which is beneficial for coatings in harsh environments.
- Wide Bandgap: In electronics, SiC thin films enable higher efficiency in power management and thermal resistance.