Showing 109–120 of 251 results
-


- High Energy Density: LiCoO₂ has a high theoretical energy density, making it an ideal material for battery cathodes, especially in high-performance applications like electric vehicles and portable electronics.
- Stable Structure: The layered crystal structure of LiCoO₂ contributes to its stable electrochemical performance, which is crucial for the long-term operation of lithium-ion batteries.
- Excellent Cycling Performance: LiCoO₂ can undergo many charge and discharge cycles without significant degradation, ensuring reliable performance in rechargeable battery systems.
- Thin Film Deposition: LiCoO₂ sputtering targets allow for the precise deposition of thin films in applications requiring uniform coatings, such as in thin-film batteries and microelectronics.
-

- High Optical Transparency: LiF has high optical transparency in the UV, visible, and infrared regions, making it an excellent material for optical coatings and components.
- Wide Bandgap: LiF has a wide bandgap (~13.6 eV), which makes it an excellent insulating material in electronic and optoelectronic applications.
- Low Absorption: LiF thin films exhibit low absorption across a broad spectral range, making them ideal for applications where minimal light loss is required.
- Chemical Stability: LiF is chemically stable and resistant to moisture, which contributes to its durability in harsh environments and long-lasting performance in thin-film coatings.
- Insulating Properties: LiF has excellent insulating properties, which are beneficial for electronic and optoelectronic devices where electrical isolation is needed.
-


- High Purity: Ensures minimal impurities, delivering superior film quality.
- Thermal Stability: Provides consistent performance under varying conditions.
- Safety Profile: Stable chemistry reduces risks of thermal runaway.
- Customizable Dimensions: Tailored to fit a range of sputtering systems.
- Reliable Deposition: Delivers uniform and high-quality thin films.
-


$1.00 – $595.00
- High Electro-optic Coefficient: LiNbO₃ has a high electro-optic coefficient, enabling efficient modulation of light in waveguides, modulators, and telecommunications devices.
- Excellent Piezoelectric Properties: LiNbO₃’s strong piezoelectric response makes it ideal for use in SAW devices, sensors, and actuators, providing high sensitivity and control.
- Nonlinear Optical Capabilities: LiNbO₃ is widely used for frequency conversion and other nonlinear optical applications due to its strong nonlinear optical response.
- Ferroelectric Behavior: LiNbO₃’s ferroelectric properties are valuable in memory devices and data storage, enabling the development of non-volatile memory technologies.
- Stable and Durable Thin Films: LiNbO₃ thin films exhibit high thermal and chemical stability, making them suitable for use in demanding environments and high-performance applications.
-


- High Purity: Ensures minimal impurities for superior thin-film quality.
- Exceptional Piezoelectric Properties: Ideal for high-performance acoustic and vibrational devices.
- Stable Electro-Optic Behavior: Suitable for high-precision optical applications.
- Customizable Specifications: Tailored to meet unique system requirements.
- Durable and Reliable: Manufactured for consistent sputtering performance.
-


- High Purity: Ensures consistent and reliable thin-film deposition.
- Superior Electrochemical Performance: Supports high energy density and stability.
- Customizable Options: Available in various sizes, shapes, and purity levels.
- Durable and Stable: Delivers reliable performance in demanding environments.
- Scalability: Suitable for both research-scale and industrial-scale applications.
-

$895.00
- High purity: 99.9% (3N) for consistent film composition
- Precise alloy ratio (1:1 at%) for uniform deposition
- Indium bonding + copper backing plate for efficient heat transfer
- Compatible with magnetron sputtering systems
- Supports stable deposition rates & low impurity levels
- Customizable sizes, thicknesses, and atomic ratios available
-

- High Thermoelectric Efficiency: Magnesium Bismuth is recognized for its high Seebeck coefficient and low thermal conductivity, making it an efficient material for thermoelectric applications.
- Low-Temperature Thermoelectrics: Mg3Bi2 is particularly effective at lower temperatures, which makes it suitable for a wide range of thermoelectric devices that operate in ambient conditions.
- Customizable Film Properties: The thin films produced using Mg3Bi2 targets can be tailored in terms of thickness and crystallinity, allowing for optimization in various applications.
- Chemical Stability: Magnesium Bismuth films exhibit good stability, ensuring reliable performance over time in demanding environments.
-


- Broad Transparency Range: MgF₂ has excellent transmission across UV, visible, and IR spectra, making it an ideal material for high-performance optical coatings.
- Low Refractive Index: The low refractive index of MgF₂ helps reduce light reflection, enabling its use in anti-reflective coatings for various optical applications.
- High Hardness and Durability: Magnesium Fluoride films are known for their hardness and resistance to scratching, making them suitable for protective coatings in high-durability environments.
- Chemical and Environmental Stability: MgF₂ coatings are chemically inert and stable under extreme temperature conditions, enhancing their use in both optical and electronic applications.
-


- High Purity: Guarantees consistent and reliable thin-film quality.
- Thermal Stability: Performs exceptionally under high-temperature conditions.
- Excellent Dielectric Properties: Ideal for insulating layers in electronic devices.
- Wide Optical Transparency: Operates effectively across UV, visible, and IR spectra.
- Customizable Options: Available in various shapes, sizes, and specifications.
-


Manganese (Mn) sputtering targets are essential for industries that rely on magnetic properties, wear resistance, and corrosion resistance, making them indispensable in electronics, magnetic storage, metallurgy, and catalytic applications.
-


- High Purity: Available in high-purity grades, ensuring clean and efficient thin-film deposition with minimal contamination.
- Good Electrochemical Properties: MnO₂ thin films are known for their excellent electrochemical behavior, making them ideal for energy storage applications.
- Thermal Stability: MnO₂ exhibits stability at high temperatures, making it suitable for thin-film processes that require heat resistance.
- Wide Range of Applications: The material is versatile, with applications ranging from energy storage and catalysis to optical coatings and sensors.